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Abstract

A theorem of Kirichenko states that the torsion 3-form of the characteristic connection of a
nearly Kéhler manifold is parallel. On the other side, any almost Hermitian manifold of type G
admits a unique connection with totally skew-symmetric torsion. In dimension 6, we generalize
Kirichenko’s theorem and we describe almost Hermitigan@nifolds with parallel torsion form.

In particular, among them there are only two type3\af manifolds with a non-Abelian holonomy
group, namely twistor spaces of four-dimensional self-dual Einstein manifolds and the invariant
Hermitian structure on the Lie group 8, C). Moreover, we classify all naturally reductive Her-
mitian WWs-manifolds with small isotropy group of the characteristic torsion.
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1. Introduction

Fix a subgroup Gc SQ(n) of the special orthogonal group and decompose the Lie
algebraso(n) = g @ m into the Lie algebragy of G and its orthogonal complemei.
The different geometric types of G-structures on a Riemannian manifold correspond to the
irreducible G-components of the representaf®t¥n® m. This approach to non-integrable
geometries is a kind of folklore in differential geometry, and was exposed in detail in the
article [19]. Indeed, consider a Riemannian manifeM”, g) and denote its Riemannian
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frame bundle byF(M™). Itis a principal S@n)-bundle oveM”. A G-structure is areduction

R C F(M") of the frame bundle to the subgroup G. The Levi—Civita connection is a 1-form
Z on F(M"™) with values in the Lie algebreo(n). We restrict the Levi—Civita connection

to R and decompose it with respect to the decomposition of the Lie algebiry

Z|T(R) =7Z*p I

Then, Z* is a connection in the principal G-bundle and I" is a 1-form onM" with
values in the associated bun@®ex g m. Suppose that the group G and the G-structure are
defined by some differential form T. Examples are almost Hermitian structures or almost
metric contact structures. Then the Riemannian covariant derivative of T is given by the
formula

VECT = 0. (D)(T),

wherep. (I (T) denotes the algebraic action of the 2-foffron T. Some authors call
theintrinsic torsionof the G-structure. There is a second notion, namelgkiz@acteristic
connectionand thecharacteristic torsionof a G-structure. It is a G-connectiov® with

totally skew-symmetric torsion tensor. Not any type of geometric G-structures admits a
characteristic connection. In order to formulate the condition, we embed the space of all
3-forms intoR” ® m using the morphism

O: AR > R" @ m, OT) =) e ®Prylei | T).
i=1

A geometric G-structure admits a characteristic connectidif and only if the intrinsic
torsionI” belongs to the image of the. In this case, the intrinsic torsion is given by the
equation (sel9,20)

2r = —O(TY).

For several geometric structures the characteristic torsion form has been computed ex-
plicitly in terms of the underlying geometric data. Formulas of that type are known for
almost Hermitian structures, almost metric contact structures argtrGetures in dimen-

sion 7 (sed22]). For a Riemannian naturally reductive spadé = G;/G, we obtain a
G-reductionR = G; C F(M") of the frame bundle. Then the characteristic connection

of the G-structure coincides with tleanonicalconnection of the reductive space. In this
sense, we can understand the characteristic connection of a Riemannian G-structure as a
generalization of the canonical connection of a Riemannian naturally reductive space. The
canonical connection of a naturally reductive space has parallel torsion form and parallel
curvature tensor

VCTC = o’ VCRC - 0.

For arbitrary G-structures and their characteristic connections, these properties do not hold
anymore. Corresponding examples are discuss§PRin However, the parallelism of the
torsion form is an important property. The first reason is #&f° = 0 implies the con-
servation laws(T®) = 0, one of the conditions for the NS-3-form in type Il string theory
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(for constant dilaton). Moreover, if the torsion is parallel, several formulas for differential
operators acting on spinors simplify (§&&) and it is possible to investigate—via integral
formulas—the space of parallel or harmonic spinors. Sasakian structures or nearly Kahler
structures have a parallel characteristic torsion form, even if they are not reductive. This
motivates the investigation of Riemannian G-structures with a parallel characteristic tor-
sion form in general. In this paper, we study the problem for almost Hermitian manifolds
in dimension 6.

First we revisit almost Hermitian manifolds in real dimension 6. The Hodge operator
acts as a complex structure or?(R®). This observation simplifies, in dimension 6, the
description of the algebraic decomposition of the space of all 3-fotA&®) and of the
spaceR® @ m® containing the intrinsic torsion. We develop the algebraic part needed for the
classification of almost Hermitian structures and we compute the corresponding differential
equations characterizing the 16 classes of almost Hermitian manifoldgL@&8,29). It
is a basic property of six-dimensional nearly Kéhler manifolds that their characteristic
torsion T¢ is VC-parallel. The necessary formulas proving that fact have been derived by the
Japanese school at the beginning of the 70-ties of the last centur|3t588,40). Later
Gray[27,28] and Kirichenko[33] used these curvature identities for the investigation of
the geometry of nearly Kahler manifolds. However, Wfeparallelism of the characteristic
torsion T¢ was explicitly formulated only recently (sg&0,22,33). We outline a short
proof here, and continue our investigation along this path. Any almost Hermitian manifold
of type G, admits a unique characteristic connection (224). We study almost Hermitian
Gz1-manifolds with a parallel characteristic torsion. TheWorbit type of the characteristic
torsion is constant. There are two possibilities. If the vector part of the intrinsic torsion is
non-trivial, we obtain two commuting Killing vector fields of constant length, and the
manifold is a torus fibration over some special 4-manifold. If the vector part vanishes,
we list the relevant B)-orbit types of the torsion 3-forms. It turns out that there exist
only two orbits with a non-Abelian isotropy (holonomy) group in dimension 6. These two
types can be realized and the corresponding Hermitian manifolds are twistor spaces or
the invariant, non-Kéhlerian Hermitian structure on the Lie grou2SC). Finally we
classify all naturally reductive Hermitiav/s-manifolds with small isotropy group of the
characteristic torsion.

2. Almost complex structuresin real dimension 4
2.1. The subgroup) (k) in SO(2k)

We start with some notations that will be used throughout this p&fedenotes the
n-dimensional Euclidean space. Using its scalar produgt we identify Euclidean space
with its dual spaceR” = (R")*. e1, ... , e, is an orthonormal basis iR". A/(R") is the
space of-formsinR”". e;;  ; means the exterior produgt A - - - Ae;, of the corresponding
1-forms. We decompose a 2-formmor a 3-form T into their components,

o= > wj-e, T= Y Ti-ei

1<i<j<n 1<i<j<k<n
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The special orthogonal group $0 acts onA/(R") and the differentiab, : so(n) —
End(A/(R™)) of this representation is given by

0+ (@)(T) = (ei Jw) A (e | T).
i=1

The space of 2-formgi2(R") = so(n) coincides with the Lie algebra of the special or-
thogonal groupg is the adjoint representation and its differengal coincides with the
commutator action.

We consider the complex structure R% — R?% of the even-dimensional Euclidean
space. With respect to the standard orthonormal basis it is given by

Jei—1 = ey, Jeyi = —egi—1, i=12,...,k

The subgroup k) c SO(2k) consists of all orthogonal transformations commuting with
the complex structure

Uk) :={A € SO2k): AoJ=Jo A}
The Lie algebrao(2k) splits into the subalgebnak) and its orthogonal complement,
50(2k) = A’(R%) = u(k) ® m.

The complex structure J acts off (R%) as an involution. Using this involution, we can
describe the spaces of the decomposition

uk) = {w € A2R%) : Jw) = 0}, m = {w e A2R%): Jw) = —v).

The center of the Lie algebutgk) is generated by the 2-for®2(X, Y) := g(J(X), ¥) and
the Lie algebra splits into

u(k) = su(k) @R - 2.
The Lie algebrau(k) is the space of all 2-forms defined by the equations
w2i-1,2j-1 — w2i2j =0, —wi-12j +w2i2j-1=0, 1<i<j<k
The additional equation singling out the Lie algebngk) insideu(k) is

w12+ w3a+ -+ wy—1,2% = 0.
2.2. The decomposition &* @ m?

In dimension 4, the Hodge operator as well as the complex structure act on 2-forms as
involutions
F=1d = Jos =x%o0Jd.

In contrast to the higher-dimensional case, in real dimension 4 there are only two types.
They are determined by the Nijenhuis tensor and the differential of the Kéhler form. In
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order to understand the geometric types @@)Jdstructures on four-dimensional Riemannian
manifolds, we need the decomposition of the represent&tfop m2. Denote by

@ R*@m? —> AS(RY), DX Q@ w?) 1= X Ao,

the total anti-symmetrization of a tensor f ® m2. On the other side, we embed the
space of all 3-forms int&®* ® m? using the morphisn® : A3(R*) — R*® m? defined in
Section 1 A direct algebraic computation proves the following Lemma.

Lemma 2.1. The morphism® : R* @ m? — A3(R%) is surjective andp o ® acts on the
space of alB-forms by

Do =Id.

Let us introduce two (R)-invariant subspaces #* @ m?,
Wy 1= Ker(®), Wi = O(A3(RY).

Obviously,R* ® m? splits under the action of the group(®) into these subspaces.
Proposition 2.1. W, andW; are real irreducible U(2)-representations

Proof. We restrict the representati®f ® m? to the subgroup S(2). Thenm? is trivial
andR* ® m? = R* @ R* splits into two irreducible components under the action of
SUR). O

2.3. Geometric types of almost Hermitian 4-manifolds

Consider an almost Hermitian manifold/4, g, J) and denote its Riemannian frame
bundle byF(M*%). The almost Hermitian structure is a reduct®nc F(M*) of the frame
bundle to the subgroup(@). The different non-integrable types of Hermitian structures are
the irreducible components of the representaR6r® m?. We split the intrinsic torsio”,

r=ner;.

Note that, via the identificatio®, I'; is an ordinary 3-form on the Hermitian manifold.
Moreover, in real dimension 4, the differential and the co-differential of the Kahler form
coincide,

02 =—*xd*2=—xdS2.
The co-differential of the Kéhler form is given by the formula
4 4
2= e |V, 2= (Ienle; 12, —) — Qei | ey, -)} = (D).
i=1 =1

The mapT : R*@m?2 — R*is obviously U2)-equivariant. Consequently, the co-differential
352 depends only on th&y-part of the intrinsic torsion.
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Proposition 2.2. Let I'y = ©(T4) be given by th&form T4 € A3(R%). ThenlI(Iy) =
—2J*xT4) holds. In particularthe co-differential of the Kahler form of any almost Hermitian
4-manifold is given by the formula

—xd2 =62 = 2XxTy).

The Nijenhuis tensor in real dimension 4 has four components. Setiing Ni(e1, e3),
it may be written in the form

N = (e13 — €24) ® N1 — (e23 + e14) ® J(N2).

The anti-symmetrization mag : R* @ m? — A3(R*) vanishes on the Nijenhuis tensor,
i.e., N is an element of the subspadé. Consequently, there are two basic geometric types
of almost Hermitian 4-manifolds. They correspond to the Nijenhuis tensor/{fhgart)

and to the differentials2 of the K&hler form (thdy-part). An almost Hermitian 4-manifold
admits a characteristic connection if and only if its Nijenhuis tensor vanishes (Hermitian
manifold). In this case, the characteristic torsion is given by the formtika TJ(d$2). It

is VC-parallel if and only if the Lee fornds2 o J is parallel with respect to the Levi—Civita
connection. Hermitian manifolds of that type are called generalized Hopf manifolds (see
[39]). The compact four-dimensional generalized Hopf manifolds have been described by
Belgun[9].

3. Almost complex structuresin real dimension 6

In real dimension 6, the Hodge operator as well as the complex structure act on 3-forms
as complex structures. Moreover, the central elenfieatu(3) acts on 3-forms, too. These
three operators split the spacas(R®) andR® @ m8 into U(3)-irreducible components.
There are four basic types of almost Hermitian 6-manifolds. They are characterized by the
components of the derivativ&2 and the Nijenhuis tensor N.

3.1. The decomposition af3(RR%)
Two operators act on the spadé(R®), namely J and the Hodge operatofrhe complex
structure acts on a 3-form T by
AN(X, Y, Z) := TJX, IV, JZ).
We obtain aZ4 @ Z4)-action on the space of all 3-forms
F=-d, «®=-1d, Jox=x0l
Let us decomposé3(RR®) into two U(3)-invariant subspaces
A3R® = A3 RO @ A3(R®), A3 :=(TeA3R®):JT)==%xT).
We embed the standard representafirinto the 3-forms

AR = (X A 02:X eRE).
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Lemma3.1. The spacesi® (R®) = A3(R®) coincide. The spaca? (R®) is its orthogonal
complement

AR ={T:2AT=0={T: 2AT =0} ={T:XT) =T}
The U(3)—representatiom§r(R6) is notirreducible. In order to decompose it, we consider

the action of the central elemest € u(3) on the space13(R®). We will denote byr :
A3(R8) — A3(RY) this special anti-symmetric operator acting on 3-forms

6
o(T) 1= 0«((TM) =Y (ei | 2) A (ei |T).
i=1

Lemma 3.2. The symmetric endomorphisr? has two eigenvalues and splits the space
A2 (R3) into a two-dimensional and &2-dimensional space

A3 (R®) 1= A3(R®) @ A3,(R®),
where

ASR®) := (T € A3R®) : e%(T) = —9T, (T) = «T},
A3 (R®) := (T € A3R®) : 74(T) = —T, XT) = «T}).

The anti-symmetric endomorphisnpreserves any of these spaces and acts as
(M) =3%T onA3R®,  «(T) =T onAdR®), (M) =—*T onad,(R®).
It is useful to have at hand an explicit basis in any of these spaces:

L3 By
iN AS(R®) © —e46+ €136+ €145+ €235, —e135+ €245+ €236+ €146,

36y .
In AZ(R®) ©  e134+ e156, €234+ €256, €123+ €356, e124+ ess6,
e125+ €345, €126t €346,

L3 6 .

iN AR 1 e123— e3s6, e124 — e456, €125 — €345, €126 — €346,
€134 — €156, €234 — €256, e135+ €245, €246+ €136,
€135+ €236, €246 1+ €145, €135+ €146, €246 1+ €235.

Any two-dimensional real representation of the simply connected compact Lie gra@p SU
is trivial. Therefore, the subgroup $8) preserves any 3-form img(RG) and we can
understand the subgroup &) c U(3) as the isotropy group of a 3-form of that type.
Moreover, we obtain an S@3)-isomorphism betweeR® andm®.

Corollary 3.1. For any non-trivial3-form T € A3(R®), the mapX — X _| T defines an
SU(3)-isomorphism betweeR® andm®.
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Remark 3.1. The irreducible six-dimensional @3)-representatiom® is not equivalent to
the standard representatiorfifi. Indeed, J is an element of the grou@Jand we compute
its trace iNR® and inm®, Trpe(J) = 0, Tr,6(J) = —6.

Now we prove thatAiz(RG) is irreducible. We use the fact that there exists only one
non-trivial six-dimensional real representation of the groug3U~or completeness, we
sketch the proof, too.

Proposition 3.1. Any six-dimensional real representation of the grdsig(3) is either
trivial or isomorphic to the standard representation®§ = C3.

Proof. The Euclidean group S®) does not contain a subgroup of dimension 8. Conse-
quently, any six-dimensional real representafitfrof SU(3) is either trivial or irreducible.
Suppose thav® % R® is irreducible. SinceC® and its complex conjugation are the only
complexirreducible representation of the group($ln dimension 3, the complexification
(V8T must be irreducible (sg&, Lemma 3.58]. Again, there are only two six-dimensional
irreducible SU3)-representations, namely Sy(3) and its conjugation. We compute the
character of the elemept= diag(z, z, z—2) € SU(3),

XsymZ((C3) (g) = 312 + Z_4 + 22_17

and conclude that SyfaC3) is not a real representation. O

Theorem 3.1. The decomposition
A3R®) = A3(R®) @ AF(R®) @ 43,(RY)

splits the space of ali-forms into irreduciblereal U (3)-representations. Moreoveng(R6)
and A?Z(RG) are irreducibIeSU(3)-representationsAg(Rﬁ) is the trivial two-dimensional
real SU(3)-representationA3(R), A3(R®) and A3,(R) are irreducible complex repre-
sentations of dimensiords 3and6, respectively

Proof. The SU3)-representatiom3,(IR%) can split only intaR® & R® or R® @ 6R? (see
Proposition 3.1 Consider the following elements of the group @Y

-1 0 0 0O 0O 0O 0 0 1 0O
0O -1 0 0O 0 O 0O 0 -1 0 0O
10 0O -1 0 0O | 0 1 0 0O00O0
81=1 9 o0 o0 -1 00| %=|-10 0 000
0 0 0 0 1 0 0O 0 0O O10
0 0 0 0 0 1 0O 0O O O o0 1
We compute the values of the characters
XA?Z(]RG) (g1) =4, XRS@RE (g1) = —4, XAfz(RG) (g2) =0,

XR6a6r1(82) = 8,
i.e., both cases are impossible. a
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3.2. The decomposition B @ m®

In order to understand the geometric types @8lJstructures on six-dimensional Rie-
mannian manifolds, we need the decomposition of the represent&fiam®. Denote

by
@R @m® - AS(RY), DX ® w?) = X A ?,

the total anti-symmetrization of a tensori ® m®. On the other side, we embed the space
of all 3-forms intoR® ® m® using the morphism

6
O : ASR® — RO @m®, OT) =) e @ Prysei | T).
i=1

A direct algebraic computation yields the following Lemma.

Lemma 3.3. The morphism® : R® @ m® — A3(R®) is surjective andp o ® acts on the
space of alB-forms by

@06 =3ld on A3(RO), @00 =1d on AZR®) ® A3,(RE).
Let us introduce four (B)-invariant subspaces & ® m®,

Wi = 0(A3R®),  Wri=Ker(®), Ws:=0(4A3,R"),

Wi = O(A3(R®)).

R® ® m® splits under the action of the group(8) into these subspaces. We investigate
the representations. It splits as an S(B)-representation. Fix a 3-form & A3(R®). The
group SU3) stabilizes T and the morphism

o RE@m® — A2R®), (X ®@w?) = x((X | T) A w?)

is SU(3)-equivariant. We can control the imagewf.

Lemma 3.4. For any non-trivial formT € A%(RG), the image offt is contained in the Lie
algebrau(3). Moreover ¥t mapsWW, surjectively onto the Lie algebrai(3).

Now we decompose the representafi®h under the action of the group $8).

Theorem 3.2. Fix two linearly independer8-formsTq, T2 in A%(RG). Then the map
U1, @ Y7, - Wo — su(3) @ su(3)

is an isomorphism dBU(3)-representations
Finally we prove thatV, is U(3)-irreducible.

Theorem 3.3. Wx is a real irreducible U(3)-representation of dimensid6.
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Proof. The element; ® (e14+e23)+e2® (e13—e24) € Whis notinvariant under the action
of the 1-parameter group generated by the central elef@enti(3). Suppose thatVs is
U(3)-reducible. Then the adjoint representation of Siéxtends to a representationf the
group U3). In particular,$2 € u(3) defines a non-trivial, skew-symmetric &)-invariant
operator, (£2) : su(3) — su(3). Since for any simple Lie group G we have

A%(g)° =0,
this is a contradiction. O
Corollary 3.2. TheU(3)-representatioR®@m® splitsinto four irreducible representations
R®@m® = W1 @& Wo @ W3 @ Wa.
TheSU(3)-representatioiR® @ m® splits into

RE @ m® = R? @ (su(3) @ su(3)) ® W3 ® Wi

3.3. The 16 classes of almost Hermitian structures

Consider an almost Hermitian manifold/®, g, J) and denote its Riemannian frame
bundle byF(M?5). The almost Hermitian structure is a reducti®nc F(M?®) of the frame
bundle to the subgroup(3). We restrict the Levi—Civita connection # and decompose
it with respect to the decomposition of the Lie algebséb):

Zltr) = YANCUN
The Riemannian covariant derivative of the Kahler form is given by the formula
(V;L(CQ)(K Z2)=TI(X)(Y |R2,72) - QY | I(X), 2).

The basic types of Hermitian structures are the irreducible components of the representation
R® @ m8. We split the intrinsic torsio”,

=& lg®In2® Is.

Note that, via the identificatio®, I> and 1> are 3-forms on the Hermitian manifold and
I's = O(X A £2) is a vector field.

3.4. The co-differentials2

The co-differential of any exterior forra on a Riemannian manifold is given by the
formula

n
do = — Zei _ Vl‘ica.
i=1
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Inserting the formula for the covariant derivative of the Kahler form, we obtain

6
—82 ="y {Ie)(ei | 2,—) — Qe | ey, —)} = 11(D).

i=1

The mapT : Ré%@m® — R6is obviously U3)-equivariant. Consequently, the co-differential
352 depends only on th&/s-part of the intrinsic torsion. We compute the relation explicitly.

Proposition 3.2. LetIs = @(X A £2) be given by the vector € RS. ThenlT(I's) = 4X
holds. In particularthe co-differential of the K&hler form of any almost Hermitian manifold
is given by the formula

82 =-4X, Tsg=0OX A ).
3.5. The differentiadi$2

We handle the differential of the K&hler form in a similar way. Indeed, the differential of
an arbitrary exterior form on a Riemannian manifold can be computed by the formula

n
do = Zei A VeL[_Cot.
i=1
Inserting again the formula for the covariant derivative of the Kahler form, we obtain

6
1
a2 = > Z ei nej ANMI(e)(ej | 82, —) — 2(ej | I(e), —)} =: M1(D).
i j=1

The mapiT; : R® @ m® — A3(RS) is obviously U3)-equivariant. Consequently, the
differential d2 depends only on thé(A3(R))-part of the intrinsic torsion. Moreover, we
need a formula for the endomorphigii o ® : A3(R8) — A3(RS).

Proposition 3.3. The endomorphisi¥; o ® is given on the irreducible components by the
formulas

(1) Mo O(T) = —6xTfor T € A3(R®).
(2) M oO(T) =-2xTforT e A3(R®).
() M1oO(T) =2xTfor T e A3,(RS).

Let us summarize the result of these algebraic computations.

Theorem 3.4. Let(M5, g, J) be an almost Hermitian manifold of type
I'=nnoels® 29 e

Suppose that the first three parts of the intrinsic torsion are given 3-forms in the corre-
sponding component of3(RR%),

I2 = 6(T2), I's = OX A 2), Iz = 6(T12).
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The differential and the co-differential of the Kéhler form do not depend onthe
component of the intrinsic torsion. Moreoyere have

82 = —4X, d2=—-6xTr— 2% (X AN+ 2% T1o.
3.6. The Nijenhuis tensor

The Nijenhuis tensor
N(X, V) == [3(X), ID)] — IX, IN)] — I[AX), Y] — [X, Y]
in real dimension 6 has 18 components,
N1 = N(e1, e3), N2 := N(e1, e5), N3 := N(es, e5),

and is given by

N = (e13 — e24) ® N1 — (e23 + e14) ® J(N1) + (e15 — e26) @ N2
— (e25+ e16) ® J(N2) + (e35 — es6) ® N3 — (e36 + e45) ® J(N3).

We apply the anti-symmetrization map: R® @ m® — A3(R). Then®(N) is contained
in A%(RG). Consequently, the Nijenhuis tensor is an element of the sub3pace WV, C
R® ® m® and coincides with thé/V; @ W)-part of the intrinsic torsion.

In particular, we obtain a characterization of Hermitian manifolds.

Theorem 3.5. The almost complex structudés integrable if and only if thé/V, @W,)-part
of its intrinsic torsion vanishes. The Nijenhuis tensor is totally skew-symmetric if and only
if the Wh-part of the intrinsic torsion vanishes

3.7. Differential equations characterizing the types

We identified the different parts of the intrinsic torsion with the differential and the
co-differential of the Kéhler form as well as with the Nijenhuis tensor. These formulas yield
differential equations characterizing any type of a non-integrable Hermitian geometry. Some
of these classes have special names. In general, we fix a six-dimensional almost Hermitian
manifold (M5, g, J).

Coroallary 3.3. The following conditions are equivalent

(1) The structure is of typgVy & Wo & Wa.

(2) 2 =0.

(3) 2rd2=0.

(4) Xd$2) = *ds2.

Manifolds of that type are called almost semi-Ké&hler or co-symplectic

Corollary 3.4. The following conditions are equivalent

(1) The structure is of typgVy & Wo & Wa.
(2) T2[d2 —1/2% (822 A 2)] = —9[dR2 — 1/2 % (822 A 2)].
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Coroallary 3.5. The following conditions are equivalent

(1) The structure is of typ&/1 & Wz & Wa.

(2) The Nijenhuis tensor is totally skew-symmetric

(3) There exists a linear connectionpreserving the almost Hermitian structure and with
totally skew-symmetric torsion

The equivalence of the second and third conditions has been proy2d]i(see also
[19]). Almost Hermitian manifolds satisfying the latter condition are callgeh@nifolds
Corollary 3.6. The following conditions are equivalent

(1) The structure is of typgV> & W3 ® Wa.
(2) 72(d2) = —ds2.

Almost Hermitian manifolds of that type are callég-manifolds
We investigate next the almost Hermitian structures of pure type, where only one com-
ponent of the intrinsic torsion does not vanish.

Coroallary 3.7. The following conditions are equivalent

(1) The structure is of typgVs.
(2) d2 = 0.

Manifolds of that type are called almost Kéhler or symplectic

Coroallary 3.8. The following conditions are equivalent

(1) The structure is of typ®Vs.
(2) Jisintegrable ands2 = 0.
(3) Nis totally skew-symmetric anlids2) = xd$2, t2(d§2) = —ds2.

Almost Hermitian manifolds of that type are called semi-Kahler

Corollary 3.9. The following conditions are equivalent

(1) The structure is of typ®Vs.
(2) Nis totally skew-symmetric arll$2 = (82 0 J) A £2.

Manifolds of that type are called locally conformal Kéhler

The most interesting and rigid class of almost Hermitian manifolds in dimension 6 is the
class of so-calledearly Kahler manifoldsin the 1060s and 1970s of the last century, they
have also been callethchibana spacesr K-spaces(see[25-27,35,36,38,40] Nearly
Kahler manifolds correspond to the pure typé and we describe this class of almost
Hermitian structures in the spirit of the previous corollaries.

Corollary 3.10. The following conditions are equivalent
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(1) The structure is of typg/.
(2) Nis totally skew-symmetric arid2 = 0, 72(d$2) = —9ds2.

Furthermore, the differential of the K&hler form satisfies the following equations:
2Ad2 =0, Id$2) = xdS2.

There is an equivalent characterization of nearly Kéhler manifolds.

Theorem 3.6. An almost Hermitian manifold is nearly K&hler if and onlyfdr any vector
Xl

(VEe2)(x,—) =0.

Proof. Consider the (§3)-equivariant majR® @ m® — S?(R6) @ R® defined by
r— X, = V50 + (VFE)(X).

It turns out that its kernel coincides with the subspe¢ec R® @ m®. O

4. The characteristic connection of a G;-manifold
4.1. The general formula for the characteristic connection

An almost Hermitian manifold is of type {df and only if it admits a linear connection
preserving the structure with skew-symmetric torsion Semllary 3.5, and, in this case,
the connection is unique. In this generality, this result has been proved in the[paher
For special types of almost Hermitian manifolds, teracteristic connectiohas been
considered before. For nearly Kéhler manifolds, Gray used it in 197(Zgee. 304} in
order to express the Chern classes. In 1976[@&#&e. 237}, he proved that the first Chern
class of a six-dimensional nearly Kéhler, non-Kahler manifold vanishes. On the other hand,
the characteristic connection of a Hermitian manifold has been used by Bismut if111989
in the proof of the local index theorem. Let us compute the formula for the torsion of the
characteristic connection of an almost Hermitian manifold of typeld3ing the ansatz

=& ls®Ie, [2=0T2), Is=0XA802), I'o=06(T1)

as well as the formulaR = —©(T°) relatingI" and the torsion form of the characteristic
connectionv® (see[19,20)), we obtain byTheorem 3.4

TC= 2Ty — 2(X A 2) — 2T12 = —8T, + JdS2).

The torsion form of the characteristic connection of a Hermitian manif6ld<£ 1 = 0)
is the twisted differential of the K&hler form (sg22, Theorem 10.3]

TC = J(d2).



B. Alexandrov et al./Journal of Geometry and Physics 53 (2005) 1-30 15

For nearly Kéhler manifolds, we hav&? = —6 x T, = —6JT>2). The torsion of the
characteristic connection is again proportional to the twisted differential of the Kéhler form

T¢ = —1Jd9).

An easy computation yields an equivalent formula for the characteristic connection and its
torsion, namely

TYX. V) = =J(VEEIW),  VRY = F(VECY — AVEEID)).

The latter formula is the original definition of the characteristic connection of a nearly
Kahler manifold as it appears in the papers of J;28]
Combining the formula

TC=-2Tr —2(X A 2) —2T12
with the general formula ofheorem 3.4
d2=—-6xTr— 2% (X NQ)+2%xT12,
we can express the differend@ — *T°€,
d2 —+T¢ = 4. (xT12 — xTo).

Consequently, we obtain the following proposition.

Proposition 4.1. The characteristic torsion forfi¢ of aG;-manifold is co-closed(T¢) =
0, if and only if

d+xTo=d*T1o.

In particular, any almost Hermitian manifold of pure typ#i, of pure type/Vs or of pure
typeWs, has a co-closed characteristic torsion farm

4.2. The characteristic connection of a nearly Kéhler manifold

Nearly Kéhler manifolds in dimension 6 have certain special properties. They are Einstein
spaces of positive scalar curvature, the almost complex structure is never integrable, the first
Chern class vanishes and they admit a spin structure[28¢e Moreover, nearly Kahler
manifolds in dimension 6 are exactly those Riemannian spaces admitting real Riemannian
Killing spinors (sed17,18,21,30). From our point of view, one of the interesting proper-
ties of nearly Kéhler 6-manifolds is tHec-parallelism of their torsion form & This is a
consequence of certain curvature identities already proved by Takaf88}siatsumoto
[35] and Gray[28]. In Kirichenko’s pape[33], the VC-parallelism of T appeared probably
for the first time explicitly. We will outline a simple proof of this theorem. A nearly Kahler
structure is characterized by the conditions

Z=7'®, =0Ty, Tre Al
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The derivative of the Kéhler form and the characteristic torsion are given by the formulas
d*2=0, dQ = —6x%Ty, TC = —2T,, TSX, Y) = —J(VEE) (D).

A nearly Kéhler 6-manifold is of constant type in the sense of Gedy; i.e.,

Scal
1AV (D12 = %{nxnznmz —&2(X, V) — &2(X, V).

In particular, the length of the characteristic torsion coincides with the scalar curvature
2
| T2 = ~—Scal
15

Since a nearly Kéhler 6-manifold is Einstein, the length of the characteristic torsion is hence
constant. It is a remarkable fact that this property of the characteristic connection implies
alone that it is parallel.

Theorem 4.1. The torsion of the characteristic connection of a nearly Kal@lenanifold
is parallel

VT = 0.

The characteristic connection of a six-dimensional nearly Kahler non-Kéhler manifold is
a SU(3)-connection

Proof. First of all, we remark that, for a 3-form,Te A2, we havel»(X) = X T2
This implies that the characteristic connection coincides with the connegtian the
decompositior¥ = Z* @ I of the Levi—Civita connection. The characteristic connection
induces a metric covariant derivative in the two-dimensional bumtgeSince B has
constant length, there exists a 1-fodArsuch that

V§T2 = A(X) - (xT2).

The co-differential$(T) = 8V (T) of the torsion form of a metric connection coincide (see
[4]). Therefore we obtain

0 = §(xdf2) = 8(6T2) = —38(T%) = —38V"(T%) = 68" (To) = 64 _| (xTo).
The algebraic typede Ag implies thatA = 0 vanishes. |

We remark that the Kéhler form of a nearly Kahler 6-manifold is an eigenform of the
Hodge—Laplace operator. Indeed, we can write the equ&tfdis = 0 equivalently as

Scal
VEC (xd$2) + %J(X) AR2=0.

The latter formula immediately implies that &2 = 2 - Scal- 2.
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Remark 4.1. The equation (se@0, pp. 146—149br [28, Theorem 5.9)]

6 Scal
>8R, Vei, Jei) = == 2(X, Y)
i=1

is equivalent to the fact that the characteristic connection is a3)stdnnection. Indeed,
the structure equation reads as

2 = Q% 1ar+(z%, ) + 3, 1.

We project onto the central element of the Lie algeli®. Sincedl» and [Z*, I'5] have
values in the subspaee®, we obtain

pr(2-%) = pr(2%") + pr(3[ 12, 12)).

The curvature identity of a nearly Kahler manifold mentioned above as well|@15=
2Scal yield that

pr(£2-%) = pr(3[ 1%, 7)),

i.e., the characteristic connection is an(8S)Jconnection.

Remark 4.2. The complete nearly K&hler manifolds with characteristic holonomy group
contained in Y2) x U(1) c U(3) have been classified [(i0]. There are only two spaces of

that type, namely the projective spa&®® and the flag manifold &, 2) equipped with their
homogeneous (non-Kahler) nearly Kahler structure. However, there is another interesting
case. The three-dimensional complex irreducible representation of the gra@p/ &ti}

is reducibleas a real representation (see the discussion @fteorem 4.4 It is realized

as the characteristic holonomy by a left-invariant nearly Kéhler structure on the Lie group
S x S

Remark 4.3. Homogeneous nearly Kahler manifolds have been classifi¢ti2zjh The
geometry of these examples has been described in def8]l.in

4.3. Gi-manifolds with parallel torsion and non-vanishing divergence

The aim of the next two sections is to study the structure of almost Hermitian mani-
folds with aVv¢-parallel characteristic torsion°TWe already know that any nearly Kahler
manifold has this property. Moreover, naturally reductive, almost Hermitian manifolds are
automatically of type @ and their torsion form i&/-parallel, too. Indeed, the canonical
connectionv®@ of a naturally reductive space has totally skew-symmetric torsion and pre-
servesthe almost Hermitian structure. Since these two properties single out the characteristic
connection of the almost Hermitian structure, we concludeiand vV ©a" coincide. But
the canonical connection of any naturally reductive space has parallel torsion. This series
of examples includes compact Lie groups equipped with a left-invariant almost Hermitian
structure. On the other side, left-invariant almost complex structures on nilmanifolds in
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dimension 6 have been discussed in detail in the pdfek6]. Here the torsion form is, in
general, not parallel.

In this section we study smanifolds with av°-parallel torsion form and non-vanishing
divergence of the Kahler form. The intrinsic torsion of a-@anifold is given by two
3-forms T, T12 and a 1-formX. The equations are

dQ2=—-6xTr—2% (X AQ)+2x*T1o, TC = 2T, — 2(X A 2) — 2T1o.
SinceVeT® = 0 impliessT¢ = §V°T¢ = 0, we obtain the necessary conditions
d(xT12 — *T2) =0, dx(X AN2)+2%Ty) =0.

The characteristic connection preserves the splittidg= A3 & A3 @ A3,. Therefore, the
conditionV¢ T¢ = 0 is equivalent to

VeX =0, VT, =0, VT2 =0.

Theforms $ :=Ti12—Trand $ ;= X A 2 + 2Ty, areVC-parallel and divergence-free
VeS = 0= VS, 8S1 =0=48S,.

Using the formula if4, Proposition 5.1ve conclude thate = 1, 2)

6

D (ei dej AT A(ei Jej |S) =0.

ij=1

The latter equation couples the 3-formsand T2 via the formX. Lengthily, but elementary
computations allow us to express this link directly.

Proposition 4.2. Let M be aG;-manifold with parallel characteristic torsigrivCT¢ = 0.
Then for any vectors, Z, the following equations are satisfied

T12(X,3X, Y) =0, T12(X, Y, Z) = T12(X, Y, IZ) + 2T2(X, Y, Z),
T12(3X, Y, Z) = T12(3X, Y, JZ) — 2T»(IX, Y, Z).
The vector fields¥ and X areVC-parallel and we compute their commutator
[X,J3X] = —T%X, X, -).
For algebraic reasons, we havg(X, JX—) = 0 and the formula simplifies
[X, JX] = 2T12(X, IX, —).

The first equation of this proposition yields now the proof of the following corollary.

Corollary 4.1. Let M8 be aG;-manifold withv¢-parallel characteristic torsion. Thex
andJX are commuting Killing vector fields of constant length

[X,JX] = 0.
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In case that the vector fiel®# # 0 is non-trivial, the leaves of the integrable distribution
{X, JX} are two-dimensional flat and totally geodesic submanifolds. They are the orbits of
an isometridR2-action

From now on we assume that the vector fi€lek 0 is non-trivial. Then the tangent bundle
splits into the integrable distributicA’ = Lin(X, JX) and its orthogonal complemefit..
We decompose the 3-forms and Tz into

To=XA 821+ IX A 22, Tio=X A 234+ IX A 24,

21,..., 84 € AX(T") are horizontal 2-forms. Remark that, for purely algebraic reasons,
these forms are orthogonal to the horizontal Kéahler fegm e4 + es A eg. Proposition 4.2
can be reformulated as

23 = X23) + 2021, 24 = A24) + 2822,
and all these forms afé®-parallel. The next proposition summarizes the result of a straight-

forward calculation.

Proposition 4.3. The Lie derivative of the K&éhler form and the differentials of the fokms
andJX are given by

dX = [ X[12(3(£23) — 323 — 292) + 2X A JX,
dIX = |X|2(J(24) — 3R24),  Lx2 = 8||X|822.

A direct consequence of these formulas is as follows.

Theorem 4.2. Let(M®, g, J) be an almost Hermitia®-manifold of typeV; & Wi. If the
torsion of its characteristic connection is parall81°T¢ = 0, thenM?8 is either of pure type
W1 or of pure typeW,.

Remark 4.4. The characteristic torsion of a nearly Kahler manifold&fsparallel. On the
other hand, suppose that® is of pure typeV,; andX is VC-parallel. Then we obtain

0= VSx = V5CUx, dX = 2(—||X|1? 2 4 X A JIX).

The vector field X is V-C-parallel, i.e., the manifold is a generalized Hopf manifold. Up to
a scaling of the length af, the manifold is locally isometric to a produtt® = N° x R?

of the lineR?! by a five-dimensional Sasakian manifai®. Conversely, any product of a
Sasakian manifold bi? is an almost Hermitian manifold of typé/; with parallel torsion.
TheseWs-manifolds have been studied by Vaisnjaa].

We consider now Hermitian manifolds. The complex structure is integrable and the forms
21 and £2, vanish. The forms2s, 24 € A2 (TV) are anti-self-dual with respect to the
four-dimensional horizontal Hodge operator and the formuldroposition 4.3implify,

dX = —2| X223 — 2| X122 + 2X A JX, dIX = —2||X||°2a.
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Furthermore, we obtain immediately that
Lx2=0, Lyx2=0  d(|X|?2—-XAJX)=0.

The forms23 and 24 are closed. Suppose that the Killing vector fiekisind X induce
a regular group action, i.e., the orbit spak®is smooth. TherX* admits a Riemannian
metricg and a complex structukkwith Kéhler form

1
R=02- —=XAXX
X1

In particular, X* is a four-dimensional Kahler manifold. The forn@zs and 24 project
onto X*. A direct computation yields that the¢-parallelism of these forms om® can
be reformulated as the condition that their projecti&h;sand Q4 are anti-self-dual and
parallel forms on the Kahler manifolki*,

693 = O’ 694 = 07 *Qg = —Qg, *94 = —.@4.

The structure group of the principal fiber bun##€ — X*is two-dimensional and Abelian.
Up to a scaling of the Ierlgth, the pdiX, JX} is a connection. Its curvature is the pair of
2-forms(Curly, Curly) on X* given by the differentials ok and X, i.e.,

Curly = —2023 — 202, Curly = —282,.

Vice versa, wecan recopstructthe whole six—dimensjonaJ structure out ofthe four-dimensional
Kahler manifold(X4, g, J) and the two parallel form£s, £24 € A2 (X*). In the compact

case we need that2, and X2 + 2§23 are curvature forms of some(l)-bundle, i.e.,
2824, 282 + 2§23 € H2(X*, 7).

We summarize the result for compact Hermitian spadés

Theorem 4.3. The compact regular Hermitian manifold8/, g, J) with non-vanishing
divergence—4X = §2 # 0 of the Ké&hler form andv®-parallel characteristic torsion
TC correspond to triples{f(“, Q3, Q4) consisting of a compact four-dimensional Kahler
manifold X* and two parallel anti-self-dual form&s, £24 such that

2824, 282 + 2§23 € H2 (X%, 7).

Itis easy to describe the possible Kahler manifdidsFirst of all, a parallel anti-self-dual
2-form gives rise to a parallel complex structure of opposite orientation. Then a compact
four-dimensional space with two independent parallel complex structures with equal ori-
entation is hyperKéahler. The existence of opposite parallel complex structures restricts it
to be a torus (sep1]). Since toric bundles over tori are always two-step nilmanifolds, the
six-dimensional manifold is at least diffeomorphic to a locally homogeneous space. When
the formss23 and £24 are linearly depentM® is actually a product Sx N° andN° is a
St-bundle over a 4-manifold which is covered by a product of two surfaces.

1 The authors thank the referee for a hint completing this classification.
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Remark 4.5. Hermitian structures with an SB)-holonomy of the characteristic con-
nection have been constructed recently on certain toric bundle$2épeThe condition
VCT® = 0 is a stronger condition and, consequently, our family is much smaller.

4.4, Ws-manifolds with parallel torsion

An interesting problem is the structure W3-manifolds withvC-parallel torsion. The
equations characterizing these Hermitian manifolds are[223g

dR2=2%xTip=—*TC, 82 =0, VeTC =0, dTC¢ = 207e,
where the 4-fornorc is defined by the formula
. 1 d C C
o7 = E;(e,-_lT)/\(eiJT ).

We remark that in the class of Hermitid#iz-manifolds an analogue dheorem 4.1does
not hold.

Example 4.1. Consider the three-dimensional complex Heisenberg group. There exists a
left-invariant metric with the following structure equations:

de, = dep = de3 = dey =0, des = e13 — e24, des = e14 + e23.
The differential of the K&hler form is given by
dS2 = e136 — €246 — €145 — €235

Consequently, the Hermitian structure is of pure typgand its torsion is given by T=
e245 — €135 — €236 — e146. WWe compute the derivativéT¢ and the 4-fornore,

dT¢ = —4e123a oTc = 2e1234— (e12 + e34) A esg.
SincedTC # 2o07¢, the torsion form of the Heisenberg group is not parallel.

The U(3)-orbit type of the parallel torsion form®Te A%z is constant. There are only two
types of 3-forms in/\?2 with a hon-Abelian isotropy group.

Theorem4.4. LetT e A?z be a3-form and denote b§t c U(3) the connected component

of its isotropy group. If the dimension Gf; is at least3, then one of the following two cases

occurs

(1) The groupGr is isomorphic toU(2) and the embedding intd(3) is given by the
homomorphism

e | R U@
=10 delg) ,8€U@) ;.
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Up to a complex factgtthere exists one orbit of that type represented by the 3-form

T = (e135 — €245+ €236 + €146)-

(2) The groupGr is isomorphic toSU(2)/{£1} = SO(3) and the embedding intd(3)
is the unique three-dimensional irreducible complex representati®uU¢?). Up to a
complex factor, there exists one orbit of that type represented [3+ttwen

T = 2(e123 — e356) — (€246 + e136) + (€145 — €235).

Proof. We use the explicit equations defining the Lie algeprac u(3) of the isotropy
group G. The 3-form T depends on 12 real parameters,

T = A1(e123 — e3sp) + A2(e124 — e45p) + Asz(e125 — e345) + Aa(e126 — €346)
+ As(e134 — e156) + Ae(e234 — e256) + A7(e135+ €245)
+ Ag(e246 + €136) + Ag(e145 — €235) + A10(e236 — €146)
+ A11(e135 — €245+ €236 + €146) + A12(e246 — €136 + €145 + €235).

An arbitrary 2-form inu(3) depends on nine real parameters

o = w12e12 + w13(e13 + e24) + wia(e1s — e23) + wis(e1s + ezp)wis(e16 — €25)
+ w34e34 + w3s5(e35 + es6) + w3p(e3e — €45) + wseEese.

The conditionp.(w)T = 0 is a linear system of 12 equations with respect to nine variables
wjj given by the following(12 x 9)—matrix.At:

 2A12 0 0 245 —2A1 2A17 —2As 2As —2A12 7
—2A11 0 0 —2A1 —2A, —2A11 2As 246 2A11
Ag A1 Ao —A3 —Ay 0 D—2A1» —B—2A11 0

—As Az —A1 —Ag A3 0 —B+2A11 —D—2A12 0
0 As —Ag C—2A12p —A—2A117 —Ay —As —Ay 0
0 —Ag —As A—2A11 C+2A1 —Ay Ag —Asz 0
-D 244  —2A3 0 0 D —2A6 —2As5 -D
B —2A3 —2A4 0 0 —-B 2As —2A6 B
0 2A10 2Ag —Ag —Asg 0 Ao A1 A3z
0 —2Ag9 2A7 —Asg Ag 0 Aq —A> —Ay
C —2A4 —2A3 2A, 2A1 —C 0 0 -C
L A —2A3 244 2A1 —2A5 —A 0 0 —-A

We introduced the notioA := A7+ A1g, B := A7 — A19, C := Ag+ Ag, D := Ag — Aq.

If T # 0, the rank of this matrix is at least 3. Therefore, the dimension of the Lie algebra is
bounded by dingr) < 6. Since Te Ai’z, the central elemen® € u(3) does not belong

to gr. An elementary discussion concerning subgroups @) Wields the result that the
group G is conjugated to S@) or U(2) and realized in the way as the theorem states.
On the other side, given one of these two Lie algelgrasthe matrix.Ar computes the
corresponding 3-form T up to a complex factor. a
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First, we study the case ofi{G= U(2). Then the 2-forms1, + e34 andesg are globally
defined andv®-parallel,

VC(e12+ e34) = 0= V(esp).

Using[4, Proposition 5.2]we compute the exterior derivativigesg),

6
d(ese) = Y _(ei _| ese) A (ei | T®) =TC.

i=1

Moreoverds2 = — x T¢ implies a formula for the derivative of the second invariant 2-form,
d(e12+e34) = —2xTC. Let us introduce a new almost complex structiibg the condition

2 = —(e12+ e34) + es6.
Then we have
VeQ2 =0, dQ=3xTS

i.e., the manifold(M®, g, J) is nearly KahlerV® is its characteristic connection, and the
holonomy HotV® = U(2) = Gt is not the whole group S(3). In the compact case
these nearly Kéhler manifolds have been classified@). There are only two of them,
namely the twistor spaces of the four-dimensional sphere or of the complex projective plain
equipped with their canonical non-integrable almost complex structure and their canonical
non-Kahler Einstein metric. Replacing again the almost complex struthyd, we obtain

a complete classification of alv3-manifolds with parallel characteristic torsion of type
Gre = U(2).

Theorem 4.5. Let (M5, g, J) be a complete Hermitian manifold of typ®s such that
VeTe =0, Gre = U(2).

Then M5 is the twistor space of a four-dimensionabmpact self-dual Einstein mani-
fold with positive scalar curvature. The complex structdrs the standard one of the
twistor space and the metrigis the unique non-Kahler Einstein metric in the canonical
1-parameter family of metrics of the twistor space

Remark 4.6. The latter theorem holds locally and in higher dimensions too [@geln
dimension 6, there are only two compact Kéhlerian twistor spaces, hamely the projective
spaceC P2 and the flag manifold @, 2) (see[23,32).

The second casetc = SU(2)/{+1} c U(3) corresponds to the three-dimensional
complex irreduciblerepresentation. The underlying real representatiofin= R® is
reducible i.e., under the action of the grouprGthe Euclidean spac® splits into two
real and three-dimensional Lagrangian subspaces. The holonomy representation is the sum
of two faithful representations. The results[pf,, Lemmas 4.4 and 5.§jeld thatM® is a
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so-called Ambrose—Singer manifold, i.e., the curvatuf®Rhe characteristic connection
is VC-parallel,

VTC =0, VCR® = 0.

Since the universal covering ofiGis compact, the Ambrose—Singer manifold is regular
and locally isometric to a homogeneous spag&¢. The Lie algebra of the automorphism
group G is the vector spage= g1<®R® equipped with the bracket (sgiet, Theorem 5.10]

[A+X,B+Y]=(JA,B]-RX, ")+ (A-Y —B-X-T%X, 1)).
In order to find the automorphism group as well as the Hermitian manifold, we consider

the Lie subalgebrao(3) C so(6). It is generated by the following 2-forms:

1
w1 = —=(e12 — e5p), w2 1= L(e13+ €24+ €35+ eap),
V2 2
w3 = %(614 — €23+ e36 — e45),
and the S@3)-invariant form T € A3(R®) is given by the formula
T := 2(e123 — e356) — (€246 + €136 — €145+ €235).

The curvature tensor of the characteristic connection is a(8Si@variant 2-form with
values in the Lie algebrao(3). Since the SCB)-representatiom?(R®) splits into 3 R3 @

Rlo S%(R3), the curvature tensor depends a priori on three parameters. However, the first
Bianchi identity yields that Ris unique

Lemma4.1. The curvature of the characteristic connection is proportional to the orthogo-
nal projection ontaso(3),

R®: A%(R®% =50(6) > 50(3),  RY(X.Y) =4 prya3 (X AY).
We remark that the 3-formCBatisfies the necessary condition in order to define an extension
of the Lie algebrao(3), namely the element of the Clifford algebe&ff(R®),

(T2 + 4 (02 + w3 + 03

is a scalar (sef@7, Chapter 10.4] It turns out that the automorphism group is isomorphic to
the semi-simple Lie group & SL(2, C) x SU(2). The Hermitian manifold/® = G/Gre

is a left-invariant Hermitian structure on 8, C) represented as a naturally reductive
space by the help of the subgroup @Jc SL(2, C) (see[3,7]). Since the characteristic
connection of the Hermitian manifold is unique, it coincides with the canonical connection
of the naturally reductive space.

Theorem 4.6. Any Hermitian6-manifold of type/Vs and
VeTe =0, Gre = SU(2)/{%1)

is locally isomorphic to the left-invariant Hermitian structure on the Lie gr&ig2, C).
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We briefly describe the Hermitian structure under consideration. Let us decompose the
Lie algebrag = sl(2, C) & su(2),

g={(A,B) e M(2,C) @ M(2,C) : tr(A) =0, B+ B' =0, tr(B) = 0},
into the subalgebr := {(B, B) € g : B+ B! = 0, tr(B) = 0} and its complement,
m:={(A,B)eg:A—A'=0,tr(A) =0, B+ B' =0, tr(B) = 0}.

The decomposition is reductivey,[m] C m. Moreover, we introduce a complex structure
J:m — m as well as a scalar produgt ), by the formulas

JA,B) = B,i-A), ((A, B), (A1, BD))m :=tr(A- AY) +tr(B- BY).

Both arel) = su(2)-invariant. They define an almost Hermitian structure Mfi =
(SL(2,C) x SU(2))/SU(2) = SL(2, C). It turns out that the almost complex structure

is integrable and the Hermitian structure is of tyld (82 = 0). Its characteristic
torsion form coincides with the canonical torsion of the naturally reductive space. The
manifold realizes the orbit type 6 = SU(2)/{£1}. Finally, let us describe some ge-
ometric data. The Ricci tensor of the characteristic connection is proportional to the
metric,

Ric”" = -3 T2 1d.

The 3-form T acts on the spinor bundlé&s with a one-dimensional kernel and there exist
two VC-parallel spinor fields,

Veyt =0, TC. ¢t =0, VeTC =0, §(T¢ = 0.

We study the case of diffetc) < 2 in a similar manner. Since HO/®) c Grc, we have
the following possibilities:

dim(Gpe) [0,1,2[1] 2
dim (Hol(V*)) 0 1]1,2

If the holonomy group is discrete, the characteristic connection is flat and the mamifold
is a Lie group. Its Lie algebra is given lgy= R®, [X, Y] = —T°(X, ¥). The Jacobi identity
is equivalent to the condition that the squér&)? of the torsion form in the Clifford algebra
Cliff(R®) is a scalar (sef84, Theorem 1.504nd[37, Chapter 10.4] However, 3-forms of
type Ai’z satisfying this condition do not exist.

Lemma4.2. LetT e A3, be a3-form and such that its squai in ¢liff (R®) is a scalar
ThenT = 0.

Proof. We parameterize a form & A"jz by its coefficientsAy, ... , A12 with respect to
the introduced basis. The endomorphisfi ¢liff(R®) c ¢liff(R’) — End(A7) acting
in the seven-dimensional real spin representation ig8ax 8)-matrix. We compute the
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numbers on the diagonal:

0,4- (A2 + A5+ A2+ A2+ A3+ A2),4- (AS+ A2+ A2+ A3
+(A7 £ A10)? + (Ag £ Ag)?).

Consequently, ¥is a scalar if and only if T= 0. a

Theorem 4.7. Let(M8, g, J) be a complete Hermitian manifold of types such that
VeTC =0, dim(Hol(V®)) = 0.

ThenM8 is a flat Kahler manifoldi.e, T¢ = 0.

In the next step of our classification we will prove that ditol(V®)) = 1 = dim(Gre)
is impossible. The holonomy representation (%) = Gy — U(3) is given by three
integersky, ko, k3 € Z and the diagonal matricgs— diage ¢, &2¢ ekse) If k,, k3 =
0, the linear system, (w)T = 0 has a four-dimensional solution with respect to T, namely

As = Ag=A7=Ag=Ag=A10=A11=A10=0.

However, a direct computation shows that for any of these 3-forms T, the stabilizer G
two-dimensional, i.e., both parametégs k3 = 0 cannot vanish. Consequently, the holon-
omy representation fs — U(3) splits into the sum of two faithful representations. The
results of[14, Lemmas 4.4 and 5.6jield again that the curvature°Rf the characteris-
tic connection isvVC-parallel, VCT¢ = V°R® = 0. Since the group Gis compact, the
Ambrose—Singer manifold is regular, i.e., the maniftd = G/Gc is homogeneous and
the Lie algebra of its automorphism group G is the vector spaee gre ® R® equipped
with the bracket (sefl4, Theorem 5.10]

[A+X,B+Y]=-R*X, )+ (A-Y—-—B-X-T%X, V).

The curvature operatorR A%(R®) — grc is invariant. Fix an elemen# € gt of length
one and denote by;Rhe coefficients of the curvatureR; A¢;) := Rjj-w. Letusintroduce
the following element inside the Clifford algebra:

RC::ZRij ej-ej-w.
i<j

The Jacobi identity implies that the sufi®)? + RC is a scalar in the Clifford algebra
Cliff(R) (vice versa: if R :A2(R®) — grc € A%(R®) is symmetric, theT¢)? + R € RY

is equivalent to the Jacobi identity). This system of equations links the curvature operator
to the torsion form. We again use a suitable matrix representation of the Clifford algebra in
order to discuss the system for concrete 3-forms T.

Lemma 4.3. There is no5-tuple consisting of three integekg, k2, k3 € Z, a 3-form
T € A3, and a curvature operatoR such that

(1) g1 =R (ky - e12 + ko - €34+ k3 - esg) is one-dimensional
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(2) The elemenT? + Ris a scalar inCliff(RS).

Proof. Since the isotropy algebgg is 1-dimensional, the 3-form is not zero. The 2-form
(k1 - e12+ ko - e34 + k3 - esp) preserves a non-trivial elementh’ﬁ2 if and only if

kikoka(ky + ko — k3) (k1 — k2 + k3)(—k1 + ko + k3) = 0.

Basically, there are two cases to consider: that one okflseis zero,k3 = 0, or that
k3 = k1 + ko.

Case 1:k3 = 0. The equatiom, (k1 - e12 + k2 - e34)T = O reads as

koA1 = koA = k1As = k1Ae = (k1 + k2)A11 = (k1 + k2)A12 =0,
(k1 — k2)(Ag £ Ag) = (k1 — k2)(A7 £ A109) = 0.

We split the first case into four sub-cases:

Case 1.1k1 # 0 £ ko, k1 + ko # 0,k1 — ko # 0,k3 = 0. The solution space is
two-dimensional and parameterized by the parametersd, of the 3-form
T € A%Z. Any T of that type is preserved by two elements of the Lie alge-
brau(3), p«(e12) T = 0 = p.(e34)T, hence the dimension of the isotropy algebra
equals two, a contradiction.

Case 1.2:k1 = k3 = 0, k2 # 0. The solution space, (k1 - e12 + k2 - e34+ k3 - e56)T =0
is four-dimensional and any of these 3-forms T has a two-dimensional isotropy
algebragr.

Case 1.3k1 # 0 # ko, ks = 0,k1 — k2 = 0. The solution space is six-dimensional
and parameterized by the parametéss A4, A7, Ag, Ag, A10. FOr any of these
forms, we compute the endomorphism F R in Cliff(R®) c Chff(R") —
End(A7) in the seven-dimensional spin representation. The condition fhaRT
should be a scalar leads to the following restrictions

R15 = R16 = Ras = Rog = R3s = R3s = Ras = R4s = Rs = 0,

Roz = —Rua, R4 = R,

Ri2 = —Raa — 2V2- (A5 + AF + A% + AZ + A3+ AZ)).

Moreover, the coefficients of the 3-form have to satisfy the three relations
A3zA10 = —A4Ag, A7A10 = —AgAg, A3zAg = AyAz.

The isotropy algebrgr of any 3-form satisfying these conditions has dimension
2,i.e., case 1.3 is impossible.

Case 1.4:k1 # 0 £ ko, k3 = 0,k1 + k2 = 0. The solution space is four-dimensional
and parameterized bys, A4, A11, A12. The condition ¥ + R € R! for some
curvature operator implies in particular that two of the parameters of the 3-form
vanish,A11 = Ajp = 0. This family of forms has been investigated already in
Case 1.1. We obtain di(gt) = 2, a contradiction.

Case 2:k1kokz # 0,k3 = k1 + kp. The second case is simpler. We solve again the
equationp, (k1 - e12 + ko - esq + (k1 + k2) - es56) T = 0. The solution space is
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two-dimensional and parameterized by the parameteisAi2. Any of these
forms has a four-dimensional isotropy algebra, again a contradiction. [

A direct consequence demma 4.3s as follows.

Theorem 4.8. Complete Hermitian manifoldgv8, g, J) of typeWs such that
VT =0, dim(Ge) = 1
do not exist
Consider HermitianA3-manifolds (M5, g, J) with parallel characteristic torsion and
two-dimensional isotropy group,
VeT® =0, Gre=Stxsh

The curvature of such a Hermitian structure is not necessarily parallel®does not

have to be homogeneous. Naturally reductive Hermitian manifolds can be constructed out
of a 3-form Te A2, and a curvature tensor R42(R% — gr such that the pai(T, R)
defines a Lie algebra structure gn= gt @ R®. The naturally reductive space/Gr is a
Hermitian 6-manifold of typé/V; with parallel characteristic torsion T.

Example 4.2. The isotropy algebra of the form E: e125 — e345 iS generated bw1 =
e12 andwy = e34. The most general invariant 2-form with valuesgf depends on six
parameters,

2
R = Z(R]iz-el/\ez-i-R§4~e3/\€4+RéG-€5Aee)®a)k.
k=1

The Jacobi identity is equivalent to
1 2 2 1
Rsg = R5g =0, Ri =R3y= -1
There exists a 2-parameter family of curvature operators associated with the form T,
R= (R%Tel/\ez—63/\64)®a)1+(—61A62+R§4-63/\e4)®a)2.

The holonomy algebrg of the connection is 1-dimensional if and only iﬂ?- R§4 =1
holds. The Lie algebrg = gt & RS has a two-dimensional center,

3 = Lin(wy — w2 + es, ¢p).

Consider the Lie algebrg® := g/3. Theng is a central extension gf*. The projections
into g* of the elementsv1, wy, e1, €2, e3, e4 form a basis of the vector spagé and the
commutator relations ig* are given by the formulas

[w1, w2] =0, [w1, e1] = ez, [w1, e2] = —e1, [w1, e3] = [w1, e4] =0,
[@2, e1] = [w2, e2] =0, [w2, e3] = ea, [w2, e4] = —es,
[e1, e3] = [e1, es] = [e2, e3] = [e2, e4] =0, [e1, e2] = (1 — Rby)ar,

le3, ea] = (1 — R3pwy.
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The Lie algebrg* is the sum of two subalgebras

p1 = Lin(wy, e1, e2), p2 = Lin(wy, e3, ea),

and we have

g =p1®p2, [p1, pa] C p1, [p2, p2] C p2, [p1,p2] =0.

The Lie algebrags, p2 are isomorphic tao(3, R), sl(2, R) or to the three-dimensional
nilpotent Lie algebra. Consequently, we gave a complete description of the possible auto-
morphism groups of all naturally reductive Hermitig¥s-manifolds with parallel charac-
teristic torsion of type T= e125 — e3as.

We remark that the torsion form E e125 — e34s represents the general case. Indeed,
letT e A?Z be a 3-form with a two-dimensional isotropy group. Following once again
carefully the proof of.emma 4.3we see that this form behaves likgs— e345in the sense
that the automorphism groups are the same. Therefore, we obtain the following theorem.

Theorem 4.9. Any naturally reductive HermitianVz-manifold with a two-dimensional
isotropy algebragTe of its characteristic torsion is locally isometric to one of the spaces
described in the previous example
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